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FREE CONVECTION WITH A NONLINEAR 
DEPENDENCE OF DENSITY ON TEMPERATURE: 
P L A N E  PROBLEMS 

V. N. Korovkin and A. P. Andrievskii UDC 536.25 

Results of  numerical simulation of  fi'ee-convective heat tran~@,r with a square-law dependence o f  den- 
silv art temperature are presented. The special features of the veloci~ attd wntperature .fields above a 
horizontal linear heat source attd art a f l a t  vertical smface as a function of the boundary conditions 
and the Prandtl number are studied. Detailed tables of numerical solutions are given. 

Free convection has been the object of  comprehensive investigation for a long time, being of both prac- 
tical and scientific interest [1]. In the majority of  theoretical studies, a linear dependence of density on tem- 
perature is used. However, for many fluids, e.g., water, molten bismuth, gallium, tellurium, the dependence of  
p on T has an extremum [2]. 

In what tallows, we present results of  a complex numerical investigation of fully developed free-con- 
vective flows above a horizontal linear heat source and on a flat impermeable vertical semiinfinite plate for 
three types of thermal boundary conditions: an adiabatic surface, a constant temperature, and a constant heat 
flux on the surface. 

An analysis is made within the framework of the model of a stationary laminar boundary layer in the 
Boussinesq approximation: 

OU 01; OU 011 0211 "~ OT OT v 02T 
- - + i = O ,  u - - + v - - = v  ~ + g y ( T - T ~ ) - ,  u I + v  - 
Ox Oy ~x 8y Or- 8x 3v Pr Ov 2 

(1) 

with the corresponding boundary conditions for the velocity and temperature fields. 

Isothermal Surface.  Let a heated vertical plate with the temperature Tw be placed in an infinite me- 
dium with constant properties and the temperature T=. We direct the x axis upward along the plate and the y 
axis along the normal to it. Then the boundary conditions are expressed as 

(2) 
y = O :  v = u = O ,  T = T  w, 

y---)oo: u -+O,  T---~ T~. 

We transform the system of equations (1)-(2) to a new torm by passing from the coordinates x and y to the 
variables x and rl, where 

V . 

(gyAT2w l 1/4 -1/4 (3) 

Moreover, a reduced stream function and a dimensionless temperature are introduced: 
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= (g~2AT2w)l/4f(q) x 3/4 , AT= ATwh (1"1). (4) 

The resultant system is written in the form 

" 3 - "  1 ', I 3 ' 
f + ~ . f f - - ~ f ' + h 2 = 0 , - ~ r h " + - ~ f l ,  = 0 ,  

f(O)=O, .f'(O)=O, f'(~)=O, h(O)=l, h(,~)=O. 
(5) 

Adiabatic Surface.  In considering flee-convective heat transfer on an adiabatic vertical flat plate with 
a linear heat source embedded in the leading edge, we have the tbilowing boundary conditions: 

0T 
y = 0 :  v = u = 0 ,  --~v=0, 

y - - - ~  : u---~ O, T---~ T~ .  

(6) 

Moreover, the law of energy conservation requires that at any x > 0 the energy transferred by convection be 
equal to the energy 

Q0 = pCp I u A r  dy = const, 
0 

(7) 

liberated by the linear source. 
Introducing transformations of the form 

,~. 116 

• 

i p-c;; ) 

/ ~ .~ \I/6 

~ p-~;,v ) 

A T = v  4~-- 2 I LP Gg~ ) 
h (q)  x -~/2 

we arrive at the following boundary-value problem: 

- 1 / 2  
A" V , 

(8) 

, 2 +½/ 0 F,,o  , f ' + - ~ f f  +h  = 0 ,  Pr + fh" = 
0 

f ( 0 ) = 0 ,  f ' ( 0 ) = 0 ,  f ' ( ~ ) = 0 ,  h'(0) =0 ,  h (oo)= 0. 
(9) 

Constant Heat Flux on the Surface. In this case, a solution of Eqs. (1) with the boundary conditions 

k c3T y = 0 :  v = u = 0 , -  -@Ty=qw=COnSt, 

y ~ o o :  u ~ 0 ,  T ~ T =  

is sought in the torm 
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4 2  ` ' / 6  
• ( g w  qw]  . . .  5/6 -1/6 
" t ' = l ~ l  J ( r l )x  , I"1= x y ,  

t *<- ) t? '"-  ) 
/" 2 "~ .,1/6 

A T  = q w  [ ~'._~V~ / h ( r l )X 1/6 , 

k ~,gq'qw ) 

where the functions .f and h satisfy the following system of equations: 

(lO) 

2 "2 1 ,, 5 , 1 
f "  + f f "  - -s f + h 2 = O ,  ~rr h + -~.fl, - f ' h  = O , 

f (O)=O,  f ' ( O ) = O ,  f ' (~)=0, h'(O)=-I, h(oo)=O. 
(Ill  

Free  Convec t ion  above  a Linear Heat  Source.  The boundary conditions for this problem have the 
form 

au 3T 
y = 0 :  V - O y  Oy 0 

y--->,,,,: u - + O ,  T--+ T~.  

(12) 

Substituting expressions (8), where 

+ ~  

Q0 = pC/, I uATdv  = const, (13) 

into (l) and taking into account (12), we obtain 

! ,, l f l [ + I f ,  h O, f ' " + l f f " + h 2 = 0 ,  ~r h + = 

f(O) = f "  (0) = h" (0) = O, f" (~o) = O, S. 'h 1 /2 .  h ( ~ ) = 0 ,  f t in=  
0 

(14) 

Of all the problems considered above, only (14) allows an analytical solution in quadratures for two 
values of the Pr number equal to ! and 1/3 [3]. The latter allows a numerical analysis of (14) "with one's eyes 
open" using analytical relations [3] as a proving ground for testing the accuracy of the constructed numerical 
solutions. This is of prime importance, since, in spite of the simplicity of the ordinary differential equations 
that describe the behavior of various convective fluid flows within the framework of the classical assumptions, 
construction of numerical solutions of these equations is not a simple matter. It is difficult to find the latter 
because the behavior of the functions f, f ' ,  and h for q -+ oo differs greatly, and the necessity of introducing 
three additional parameters aggravates the difficulties of the analysis. That is probably why the numerical data 
obtained by different authors [4-7] in integrating system (5) are scattered. 

Calculat ion Results. Four nonlinear two-point boundary-value problems were solved numerically by 
reducing (5), (9), (11), and (14) to the corresponding Cauchy problems, which are stated at 1] = 0. The Cauchy 
problem, which requires the introduction of two additional parameters f"(0) (or f '(0)) and h'(0) (or h(0)), can 
be related to the initial boundary-value problem by integrating the system of ordinary differential equations for 
finding the unknown functions f and h in the rl-direction by the Runge-Kutta-Merson method to a value 1"1 = 
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rim (rl~ is a numerical approximation of  the mathematical point r I = oo) at which the asymptotic boundary 

conditions are met. As the parameters are refined, the quantity q=  grows automatically,  thus eliminating its 

effect on the unknown functions. Calculations are considered to be completed if the values of  the functions f 
and h at "infinity" are about 10 -l°  and f tends to a constant value as n "--~ rl~- It turned out that with these 

criteria o f  convergence, rim lie within the range 11 = 800-10(X). 
In contrast to the solution of  analogous self-similar problems in which a linear dependence o f  density 

on temperature is postulated [8-10], a strong dependence of  the solution on deficient boundary conditions at r I 

= 0 (for the considered problems, converging solutions exist within a very narrow range of  arbitrarily pre- 

scribed values) is a special feature of the numerical integration of  (5), (9), (11), and (14). 
Results of  the calculations are given in Tables 1-4. The same tables present numerical results found 

earlier [3-7, 10, i11. Attention should be paid to the substantial difference in the behavior of  analogous free- 

convective flows with linear (n = !) and square-law (n = 2) dependences o f  density on temperature. This is 
true not only for the main velocity and thermal characteristics (n = 2): 

a) an isothermal surface: 

2 
u x  , 1/2 "lTwx 
- -  = f  Gr x , -~ - f "  (0) Gr 3/4 , 
v pv 

3 
1/4 f 

- -  ~ N u t = l -  h' - - 2 ; 
m = f ( < ~ ) t J r r  , . ( 0 ) } G r i f  4 , G r , _  <~AT2wx 

IX v 

b) an adiabatic plate: 

2 
IIX , 1 / 3  "~w X 1 / 2  

- f  Gr,. , ~ - f "  (0) Gr,. 
v pv" 

m ~ I/6 g~Q,2rr3 
- - = f ( o o )  ot~r , A T =  Q0 , ~ - 1 / 6  n or~. ' G r r -  ~' ~ 4 ; 
. .c .  o'c;,, 

c) a constant heat flux on the surface: 

2 
l IX  , 1 / 3  "¢w X " ~ I / 2  

- f  Grx , - 5 - f  (0) tJr  r , 
v pv 

2 5 
m . - .  1 / 6  1 ~ 1 / 6  g ' ~ q w  x 
- - = f ( ~ ) c J ( ~ .  , Nu.~.= t_, U , Gr X-  ~ ~ ; 
g h (0) v-k- 

d) free convection above a linear heat source: 

U.'t" = f ' / ~  1/3 
t Jilt. , 

V 
m =.f (~)  Gr,/6 
g 

AT= Q0 hGrTl/6 
.c;, 

gyQ(2rr3 

, G r , . -  . v 4 '  p-c;,v 
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TABLE 1. Comparison of Values of f" (0 ,  Pr), -h'(O, Pr),fm(O, Pr), qffm), and f(oo, Pr) for the Case of an Isothermal 

Surface 

Pr [41 [5] [61 [71 Our data 

5 - - - 

6.7 

10 

11.4 

50 

100 

0.651 
0.707 

0.509 
0.615 

0.441467 
0.723764 
0.13896 

0.871 

0.72610 

0.53232 
0.57296 
0.19679 

0.982 

0.49879 
0.62417 
0.17473 

0.946 

0.49390 
0.63209 
0.17159 

0.941 

0.45569 
0.69977 
0.14796 

0.897 

0.44225 
0.72599 
0.13999 

0.881 

0.31272 
1,08329 
0,07304 

0.708 
0.26456 
1.29793 
0.05299 

0.630 

0.5322756 
0.5729631 
0.1967988 

0.984 
0.6438093 
0.4987514 
0.6241446 
0.1747261 

0.947 
(I.5935931 
0.4938825 
0.6320921 
0.17161(19 

0.941 
0.5865081 
0.4556569 
0.6997710 
0,1479692 

0.898 
0.5324935 
0.4422425 
0.7260241 
0.14(~211 

0.882 
0.5141586 

0.26491)45 
1.3002151 
0.0533411 

0.643 
0.2931541 

TABLE 2. Comparison of Values off"(0,  Pr),/l(0, Pr), f~(0, Pr), r l~l) ,  and f(oo, Pr) for the Case of all Adiabatic 

Surface 

Pr [7] Our data 

0.7 

6.7 

0.84292 
0.73891 
0.64230 

1.575 
1.99105 
0.95999 
0.83863 
0.65518 

1.426 
1.88821 

0.9599893 
0.8386279 
0.6551854 

1.427 
1.8881967 
1.2602547 
1.0911458 
0.6826771 

1.159 
1.7507355 
1.8759282 
1.5993326 
0.7233843 

0.885 
1.6498778 
2.1451402 
1.8194109 
0.7366124 

0.771 
1.6295056 

Pr [71 Our data 

7 

10 

11.4 

50 

100 

2.18912 
1.85529 
0.73857 

0.757 
1.62682 

2.75313 
2.31408 
0.75988 

0.634 
1.60175 

7.94751 
6.50650 
0.83319 

0.269 
1.55149 

2.1891220 
1.8552901 
0.7385754 

0.759 
1.6268063 
2.5873081 
2.1794033 
0.7542769 

0.667 
1.6076609 
2.7531305 
2.3140770 
0.7598830 

0.635 
1.6017350 
5.6433241 
4.6497670 
0.8141457 

0.357 
1.5609137 
7.9475224 
6.5065044 
0.8331939 

0.269 
t.5514761 
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TABLE 3. Values o f  fro(0, Pr), h(0, Pr),fm(Pr), rl(,fm), andfloo, Pr) for the Case of  a Constant Heat Flux on the Wall 

Pr f"(O, Pr) h(O, Pr) fm(Pr) g(fm) f(~,  Pr) 

5 
6.7 
7 
10 

11.4 
100 

0.7766409 
0.6684380 
0.6536396 
0.5450123 
0.5099208 
0.1707620 

1.3490768 
1.2748728 
1.2642436 
1.1818933 
1.1533939 
0.7831477 

0.2342305 
0.1964631 
0.1913436 
0.1541873 
0.1423717 
0.03679(10 

0.816 
0.808 
0.807 
0.796 
0.792 
0.701 

0.656030 
0.587891 
0.578433 
0.507682 
0.484226 
0.227356 

TABLE 4. Comparison of  Values o f f ' ( 0 ,  Pr), h(O, Pr), and floo, Pr) for the Case of  a Linear Heat Source 

Pr [3] [ 10] [ l 1 ] Our data 

0.01 

0.1 

1/3 

0.5 

0.7 

1 

2 

3 

5 

6.7 

7 

10 

11.4 

100 

0.58736773 
0.33911692 
1.87728697 

0.65518535 
0.46328600 
1.61887041 

0.5874 
0.3391 

0.6113 
0.3798 

0.6318 
0.4177 

0.6552 
0.4633 

0.7096 
0.5748 
0.7478 
0.6585 
0.8022 
0.7894 

0.8410 
0.8947 

0.8994 
1.0809 

1.1105 
2.7727 

0.330113 
0.114954 
5.251095 
0.507720 
0.239243 
2.534327 
0.587368 
0.339117 
1.877309 
0.611333 
0.379804 
1.749512 
0.631743 
0.417669 
1.673798 

0.655185 
0.463286 
1.618874 

0.847186 
0.888610 
1.597136 

0.914406 
1.066852 
1.632648 
1.307069 
2.518282 
1.881156 

0.5873677 
0.3391169 
1.8772870 

0.6551853 
0.4632860 
1.6188704 

0.8052446 
0.786t5(~ 
1.5792191 
0.8415191 
0.8743897 
1.5944645 
0.8471855 
0.8886092 
1.5971306 
0.8956044 
1.0151754 
1.6221215 
0.9144(149 
1.0668515 
1.6326421 
1.3070689 
2.5182830 
1.8811542 

but also tbr the effect of  the number Pr. For example,  fundamentally different results for the velocity field are 
obtained in the problem of  tree-convective fluid f low along an adiabatic wall. At n = 1, as the Prandtl number 

increases to 0.2924--0.2934, the maximum longitudinal component o f  the velocity vector increases, and with a 

further increase in Pr, a decrease in it is observed [ t2] .  If  n = 2, the dependence fro(O, Pr) has a monotonic 
character: the maximum of  the dimensionless veloci ty and the friction stress on the wall increase with Pr 

(Table 2). 
Heat transfer on a vertical flat isothermal surface at n = 2 (Table 1) is 15% lower than the correspond- 

ing value at n = 1 [2, 9]. 

N O T A T I O N  

u and v, longitudinal and transverse veloci ty components;  x and y, longitudinal and transverse coordi- 

nates; T, temperature; Tw and T=, temperatures o f  the wall and the surroundings; q, heat flux; k, thermal con- 
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ductivity; v, kinematic viscosity; It, dynamic viscosity; AT = T - T = ,  excess temperature; p, density; 7, n, pa- 
rameters of the density; Pr, Prandtl number; Cp, heat capacity at constant pressure; Grx, Nux, local Grashof and 
Nusselt numbers; m, mass flow rate per second; g, free-fall acceleration; Xw, friction stress on the wall. Sub- 
script: m, maximum. 
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